Nyomtatás

Hogyan válasszunk mesterséges intelligenciát okosan?

2024-11-11 647

A generatív AI képességei rohamosan fejlődnek, de a gépi tanulás és a mesterséges intelligencia más típusai sok eseten jobb, egyszerűbb és költséghatékonyabb megoldást adnak a vállalatoknak. Beruházásuk megtérülése múlik azon, hogy a technológiák, eszközök és módszerek közül mekkora hozzáértéssel választanak.

A nagy felhajtásból adódóan a generatív mesterséges intelligenciát gyakran túlzott elvárások övezik. A generatív modellek képesek már képeket, szöveget, videót vagy akár zenét is előállítani - mindezt a tanításuk során látott adatokból megtanult összefüggések alapján.

Félreértés, hogy a generatív AI szöveges modelljei "okos keresők". Ezek a modellek mindössze "következőszó-generátorok", amelyek szavanként generálják ki jóslataikat a felhasználói bemenetre. Ahhoz, hogy az okos kereső képességekre felruházható legyen, elengedhetetlen a megfelelő szakértői kompetencia bevonása, különben kontroll és minőségbiztosítás nélkül a szövegben legvalószínűbben soron következő szót adja válaszul a tanítóadataikban látottak alapján. Szoftverkódot is ugyanígy generálnak. Bizonyos feladatok hatékony elvégzésére tehát kiválóan alkalmasak már most, más problémákhoz viszont működésükből kifolyólag nem ideálisak önállóan a szükséges eszközkészlet nélkül.

"Azon feladatok automatizálására, amelyekre a generatív AI nem ideális sokkal jobb és olcsóbb megoldást kínálhat egy-egy klasszikus gépi tanulási modell" - mondta Póda Csanád, a Kontron Hungary ML/AI rendszertervező mérnöke.

A gépi tanulás (machine learning, ML) alkalmazása azonban kevésbé látványos, mint egy emberi nyelven "beszélgető" robot, így a széles nyilvánosság képzeletét sem ragadta meg úgy, mint a természetes nyelvi felületen bárki számára hozzáférhető generatív mesterséges intelligencia. Aki nem ismeri ezeket a módszereket, könnyen elveszhet bennük egy magas színvonalú, hozzáértő támogató csapat nélkül. Ezért vagyunk mi - hogy segítsük a navigációt ezeken a zavaros vizeken."

Kis és nagy modellek, testre szabva


A generatív AI értelmes, hasznos, hatékony, megbízható, biztonságos és etikus használatához a megfelelő technológiai, szervezeti, emberi, társadalmi és szabályozási feltételeket is szükséges megteremteni. 

Vállalati szinten tovább árnyalja a képet, illetve bővíti a lehetőségeket, hogy a nagy (nem csak nyelvi) generatív modellek mellett megjelent rengeteg kisebb, előtanított, nyílt forráskódú modell is"

- mondta Póda Csanád.

"Ezeket a különféle feladatok elvégzésére előre tanított, nyílt forráskódú modelleket a vállalatok saját adataikon testre szabhatják, így gyorsabban és költséghatékonyabban valósíthatják meg projektjeiket. Egy ilyen modell továbbfejlesztésével készítettük el például a Számlamenedzser alkalmazásunk szállítófüggetlen számlafeldolgozóját, amely a beérkező (akár scannelt) számlák adatait egy mély neurális háló segítségével ismeri fel és írja át automatikusan a vállalatirányítási rendszer megfelelő mezőibe. Ezáltal a hagyományos rendszereknél sokkal rugalmasabb megoldást kaptunk, amelynél nem kell minden új számlatípus feldolgozásához új sablonokat létrehozni, hanem minden számlatípust egy modell ismer és dolgoz fel."

Emellett a vállalatok a hatalmas adatmennyiségeken tanított, több milliárd paramétert használó generatív AI modellek kimenetét is optimalizálhatják Retrieval-Augmented Generation (RAG) segítségével. A költséghatékony módszerrel ugyanis a generatív modellek képességeit speciális területekre vagy saját belső tudásbázisukra terjeszthetik ki, így pontosabb és hasznosabb válaszokat kaphatnak anélkül, hogy a modellt újra kéne tanítani - az információt ugyanis az ügyfél saját dokumentumtárából keresik ki és adják át a generatív AI modelleknek feldolgozásra, ezzel csökkentve a hallucinációk valószínűségét.

Részletek a computertrends.hu oldlán >>

Hírfigyelő

Kiváncsi, mit írnak a versenytársakról? Elsőként olvasná a szakmájával kapcsolatos információkat? Kulcsemberekre, projektekre, konkurensekre figyelne? Segítünk!

Ez az e-mail-cím a szpemrobotok elleni védelem alatt áll. Megtekintéséhez engedélyeznie kell a JavaScript használatát.

Események

Versenyben

Ingatlanpiac

Üzleti hírszerzés, biztonság